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I INTRODUCTION

Solving the equations governing inviscid fluid mechanics is not

an easy task - essentially because the system is non-linear. In addition,
in steady flow past blunt bodies various regions differ from each othe:

mathematically - the subsonic flow at the front of the body is governed

by elliptic partial differential equations while the same set of

cgquations become hyperbolic farther downstream.

Bew Shock Wave

Mo 2 |

S\’bﬁvh;‘, r?(..g\

Senic 0 me.

Senic Faiat

Fig, 1

Because of the difficulty in obtaining analytic solutions there werc
developed, in the 1950's, a number of numerical methods. Two of the
better known ones were the method of Integral Relations due to
Dorodnitsyn and Belotserkovskii [1] and the Inverse Body Method of
Garabedian [2]. Both arc usually used in the subsonic region only
with the method of characteristics being emploved for the supersonic

flow. These two algorithms are efficient from the point of view of
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speed of calculation and core memory requirements. They do, however,

encounter difficulties in two areas: near the sonic point and at the

expansion corner (see Fig. 1). Since these methods solve the steady

flow equations they cannot be applied to truly time dependent problems -
such as the diffraction of a shock wave by the bow wave of a body in
supersonic flight. In the 1960's Lax and Wendroff [3], Richtmyer [4]

and others developed finite-differences algorithms of second order
accuracy for solving the time dependent equations. In principle these

methods possess several advantages: the ability to treat time dependent

problems, the ability to include shock waves without special treatment
and the fact that the whole flow field is governed by hyperbolic

partial differential equations.

It is also found that the sonic line region and the expansion
corner do not present any difficulty to these types of computations.
The major disadvantage of these algorithms is having an additional
dimension (time) - thereby increasing the computation time. The
length of computation depends on the time step, 4At, which the
algorithm allows without causing numerical instabilities. Thus, where
possible, it is desirable to devise algorithms with larger allowable
time step. Zwas [5] has modified the Richtmyer two step method so

that At 1is increased by 40% in two-dimensional calculations and by

70% in three dimensions. Flows containing shock waves are subject to

little understood non-linear numerical instabilities. Harten and
Zwas [6] show how to deal with this problem by employing the Shuman
filter. Goldberg, Gottlieb, Turkel and Abarbanel [7], [8]), [9], [10],

developed a number of algorithms for achieving high order accuracy
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«4th order and more) and also considered the theoretical problems
connected with applying boundary conditions at moving boundaries (e.g.

the Rankin-Hugoniot conditions at a shock wave).

The specific problems solved in this report are as follows:

1. Supersonic flow of ideal gas past two dimensional bodies at zero

angle of attack. The bodies are blunted wedges connected to

straight afterbodies (see Fig. 1). The calculations were carried

out for a range of Mach numbers, 2 < M < 4, and for various

values of the wedge angle.

2. Supersonic flow past two dimensional bodies at various angles
of attack.
& Supersonic flow past blunted bodies of revolution such as blunted

cone followed by a circular cylinder afterbody (see Fig. 1).

4. A 3-D calculation of the flow past an axisymmetric body. While
this problem is not truly axisymmetric the calculation was carried

in 3-D and the results compared well with the axisymmetric computati

for the same body. ([These results encourage us to attempt truly 3-D

problems. ]

In Section 2 are presented the partial differential cquations for
the various cases; Section 3 describes the numerical scheme; the
houndary and initial conditions treatment is given in Section 4 and

Section 5 discusses the numerical results.




2. THE EQUATIONS OF MOTION

(1) Two Dimensional Flow

The Euler equations for the time dependent flow of inviscid,

compressible fluid are:

) 9 9 . .

33 T Ef(pu) + Ey(pv) =0 (Continuity) (2.
JL( u) + JL( uZ+p) + jL( uv) = 0 (x-momentum) (2
3t 2 3% P P ay y 5
3 3 3 2 = =

splev) * =(pvu) =+ '57("" +p) 0 (y-momentum) (2.
?_E_ P 3 (E+ . (E+ =0 E ti (2
5t * 3x(U(E+p)] gy [V(E+p)] = (Energy equation) .

where u, v, o, p, E are, respectively, the fluid velocity in the
x-direction, fluid velocity in the y-direction, the density, pressure
and total energy (internal plus kinetic energies) per unit volume of
the fluid at the point (x, y) at time t. We still have to
characterize the fluid through its equation of state. We'll consider

ideal gases for which

P

1 : -
E = —TY’ + E—p(uzﬁ' \'2) (=

or, solving for p,

p = (v-1)IE - Lo(u2s v2)) (2.

-

where vy = cp/cv is the ratio of specific heats at constant pressure

1)

4)

6)




and volume respectively. For hypersonic flow, for example, one would

have to use a different equation of state.

The above system of partial differential equations is written in

divergenceless form. In vector notation it may be written as

=

_ 3F 3G
_ﬁ+§;’_ (2.7)

3

[o%}

t

with the vectors W, F and G given by

(2.8)
(o] 5 - m i E - n i
R 2
m (0o3) n2 - (v-1) (B-R) - o
2p 2p P
W = - F = ; G= 2
_ mn Y'3) 2 =7 _me
n 3 %0 n (v-1) (E 20)
i 202 P 2p2 o)
L J o -J
and where m = pu and n = pv

(ii) Three Dimensional Flow

The conservation equations are of the form:

oW

_ oF
3t
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where
- 4 = F - §
=% . n2+g?
n 0=3) w2 - (- e-250
75 o
s g & Nce L (2.10)
¢ - nE
N
E .L_Y;l_). m(m2+n2+9,2) = l’LL"
1 fog :
B i e o
- n - £4
_m - =
. 0
6= | &3 n2 . -y e Rited ] . - - B
7= n ComR}@R-— =l 12,431}
4 . S g
_ne K2d 92 - (y-1)qe-Bsiy
o 4P o
(y-1) I ynk - 38
o n(mé+n<+22) = Iy-1) g(m2+nd+¢?) - 4.2
2p 20% .
L . - :
where now
o ; 1 o R 2P P
P = (y-1}E - So(usvStwc}] (4e 24
§ i (2.13)

and w 1s the velocity component in the =z direction.

.




(1ii)  Cylindrically Symmetric Flow
We get this case from the 3-D equations (2.9) - (2.13) through

the substitution
X = X, =R SRR Al Z 5 & COS 6, (2.14)

and by going from the velocity components u, v, w to velocity
components in the x, r, 8 directions - i.e. u\, ur and .
D e

respectively. Since we assume cylindrical symmetry, we may as well

assume uy = 0 and label wu, and u, by u and v respectively.
All variables now depend on t, x and r = Vy2 + 2, As a consequence

of this transformation we get the following system of equations:

o Pk L s e RS
W(IL) +;‘—x‘(lulﬂ 1 ”‘(I‘\) = 0 A
d_(rou) + =—[r(pu+p)] + ==(rouv) = 0 315
F?(xpu e Tr(ou<+p)| F?(I;U\ = Sk
JLLr&v) + JL(r\vu) % JL[r(\v2+p)] = p (2LE7)
ot : B RES + I A
-3—(rF) $ JL{xwx(F+v)] ¢ Lrv(Eqp)] = 0 (2.18
°F ks ax gl 3T i+ :

Notice the inhomogencous term in Eq. (2.17). The vector form of this

system 1s

i

I
}
|
=
i
&
+

k] 3 3
— ' —(rG) + S 2.19)
‘t(rh) r(lk\ (




where the pressure is again defined as in (2.6) and the nonhomogeneous

term veetor, S, 1is given by

o o

= [

The vectors W, F and G are the same as those given in Eq. (2.8).
If we 1abel W' = rW we see immediately that 7rF(W) = F(W') and
rG(w) = G(W'). Let F' = F(W') =rF and G' = G(W') = rG; 1i.e.
F' and G' are the same vector functions of W' = rW as F and G
were of W. Thus our task becomes the solution of the system

W' 3F' 3G

= + + S [ 20
it 3X ar 3 ’ g

3 THE FINITE DIFFERENCE SCHEMES

In all cases described herein the algorithms used are based on a
two step scheme a la Zwas and Burstein [5], [11], [12]. In the two-
dimensional and cylindrically symmetric cases the schemes use 9
computational points in a 3 x 3 net. In the 3-D case we require

27 points constituting a 3 x 3 x 3 cube.

We now present the schemes, their linear stability criteria and

the way we use the Shuman filter to prevent non-linear instabilities.




(1) The Two-Dimensional Case

/

: The wvectors Wlic, ¥, tl, EN(x, ¥, t)) and GW(lx, ¥, t,)) are
approximated by discretized vectors. Thus W? i W(jax, kay, tn)=W(x,y,t)
’

where Ax, Ay and Atn are the step sizes in the finite difference net.

Similarly F% = F(WD and G% . = G(W! ). We shall take
1 4 Jnk ( J9k) J;k ( J,k) :
Ay = AX = constant, but At~ may vary. The number of time steps ;
n :
required to reach the time t, is n ; i.e. t = ] At,.
m=1

The basic finite difference scheme approximating the system (2.7)

is given by:

n

") y
W = W * [P - F + G - G ]
jti,k+1 J*i,k+z = jrlglerd Jrk+z j*z,k+1 Jti,k
(first step) (3.1}
n+1l n A+ 2 SN*z N o
W = W + A[F = g + G = e ] (second step) (3.2)
j’k j!k j+%9’ j"%)k j’k+% jrk"%
:‘
where
A = At/Ax = At/Ay (3.3)
<0 1.0 n n n
W = —(W + W + W + W ] (5.4 ‘
jed ker 4 gelkel Gel,k jLkel LK |
|
a0 ] n n 2
F = F(T(W + W ¥} (5.5)
j+l,k+} & 4»1,k*] j+1,k




with similar expressions holding for discrete vectors with different

subscripts.

The criterion for the numerical (linear) stability of the scheme

(3.1) + (3.2) constrains the time step to be (see Ref. [11]):

AX
NoNe— e {59
c+/&2+v2
AL
where ¢ = (yp/p)® is the speed of sound. In practice, one has to check

all the involved qualities at each grid point and select the minimum of

the right hand side of Eq. (3.9) over all j and k. Thus, we use

AX

e n et 2
'}fi‘cj,k*/‘“m‘ o




(11) The Cylindrical Symmetry Case

For the sake of convenience we shall drop now the primes of the
vectors W', F' and G' appearing in Eq. (2.21) and the discretized

approximations of these vectors will be

w? = W'(jax, kar, t_) = rW(jax, kar, t_) where, as before 4ax = &r
i,k n n

is the grid size while t, = ] at,. As before, we define

m=1 .
n - e 5 n . ) : |
Fj,k F(W'(jax, kar, tn)) F(wj,k) and similarly for G'. i

The basic scheme representing Eq. (2.21) is given then by:

n+;z R xh N N AN At A
W = W ¢ 5P -F +G -G J¢« = § (3.11)
j+i,k+z j*z,k+z: jrl.k+d g ktd ez kel JEi,k j*x kt2
(first step) |
n+l n AN+ 3 AN+E Ntz D AT1+3
W = W + e -F +G -G A E RS (second step)(3.12)
J,sk Jyk j*s,k j-#,k j,k+¢ j,k-% Jk
where
X 1 n n n n
S = =85 + § + S LR (3.13)
Jri,ked Y GElkell | gEbGE iR
’\,n*}" 1 n“% n+% n+% n+5
S = I{S + S * S S ] (55 14
3 ;K J*+3,k+; j*i,k-z = skt J-tyk=t
n+; n+j
S = S(W ) B (3.15)

j*i,k+i j*E ke




2l % -

. A N+ 3
The expressions for Fj+1,k+% , F

vector

stability condition remains as in Eq.

(11i) The Three Dimensional Case

jti,k

the same as in the cartesian case, Eqgs.

ﬂln
G5t ko1 2

(&S = (et o

(310 %

Nn+%

i, k+4 etc.

are

The inhomogeneous

S does not effect the (linear) numerical stability and the

The various difference expressions for this case are obvious

extensions of the two-dimensional ones.

scheme approximating the system (2.9) is given by:

’\Jn r\‘n
+ G - G
Jre kel eed i,k es
n+l n At it
W = W R SR
J’kyl Jskyz j+%:k’2 J'%’kyl
AN+ 3
+ H
¥ Ko 8%4
where X = At/Ax = At/AYy = At/bz
Wy 1
W = —[W + W
j*s,k+g, e+t 8 jel,k+l,s j+1,k,%
+ W + W
i et (00,5 1 DK ) jrls k0%l

N
=g

Jhl o et ke

j*i ke, el

H ]

The basic finite difference

7,L%2

(first step)

1
ANtz

G
jak'ﬁal

(second step)

(S 1E)

(3:18)

S vl9)
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an 1. n n n n
F F(7(W +W +W +W )) (3.20)
j+l,k+%,0+3 el kel 21  jel kel,0 4l k241 §61,k.0
'\Jn+i‘ 1 n+é n+‘i n+é n+i
12 = F(ELW + W + W + W 1)
Jtz,k,% Jrdkta, 05 Jtisk+d, 04 J%% k4,044 i*s,k-£,2-4
{3.71)
AN 1 N n n n
G = G(=(W + W + W + W ))
j*i,k+1, 2+ 4 j4l,k+1,8+1 j+1,k+1,2 j,k+1,2+1 j,k+1,¢ (3.22)
AN* 1] DN*3 n+; n+s; n+;
G = G(Z(w + W + W + W ))
j,k“‘zl,f, j+ls]\+%)£+l' J+I’}\+7|)Q-zl J'il)k+§|;£+zl j'érk*"!_,*'.,
525
AN 1 n n n n
H = H(=(W + W + W + W 3)
j*i,k+t, 2+l 47 j41,k+1,2+1 j+1,k,2+1 j,k+1,2+1 j,k,u+1
(3.24
A 1 n+s; n+3: n+3 n+:
H = H(—(W + W W + W e
Jak, 0+ 4 ¥z, k+i, 043 Jrd k-t ,0kd  jod, ke, n4d S e
(3.2

with similar expressions for different subscripts. By anology to (3.10)

the largest time step allowable under the (linear) stability criterion 1:

AX

n z N 2 .
/T“j,k,c) +(\j,k..\ +(w
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(iv) The Treatment of Shock Waves by an Automatic Numerical '"Switch"

In most of the flow field, the 2-D and 3-D algorithm - Eqs.(3.1)+
(3.2) and (3.16)+(3.17) and the cylindrical symmetry algorithm - Egs.
(3.11)+(3.12) - give results which are linearly stable and which are of
second order accuracy. In the vicinity of shock waves and stagnation points
there exists (for different reasons) the danger of non-linear numerical
instability. Harten and Zwas, [6], ameliorate this phenomenon by a
modified application of the Shuman filter. Usually (see Vliegenthart {13])
the filtering is applied to the whole flow field and this reduces the
accuracy of the algorithm to first order. If, however, the filtering is
done only in the immediate vicinity of a shock wave, then the non-linear
instability is usually prevented while the accuracy of the computation in

the rest of the flow field remains of second order.

In the two-dimensional and the cylindrically symmetric cases

one proceeds as follows:

n+1l n
W =L W (3.27)
J,k Jk
_n+l n+l 1 X n+1l n+l X n+1l n+1
W =W + — [0 (W - W ) - ® (W - W )]
i,k jo.k 4 7 jep,k jH1,k j,k jedsk J.k je1,k
1 y n+l n+l y n+1 n+l
+ — [o (W - W ) - 8 (W - W R (3 280
4 " j,k+s  j,k+1 j,k j,k-4 j,k i, k-1

Where the operator L 1is the scheme (3.1)+(3.2), or in the cylindrical

symmetry case, the scheme (3.11)+(3.12). The "switches" ey, 5"

are defined as follows:




6 = x y (3.29)
J+5 .k max|p - 0 1

ja.k| j+1,k 3.k
y lo o m
6 = g et ok (3.30)
J,k+3: max | p - p )

3Lkl J,k+1 i,k

Near shock waves, or other regions of very strong gradients, the
expressions in the square brackets in (3.29) and (3.30) are of order

unity and then ex, oY = x and the filtering defined by (3.28) becomes

operative. Away from the shock-wave, the flow is smooth and 8> °Y = 0[(Ax)m}.
_n+l n+l
Thus, for m > 1, 1in the smooth regions W = W + 0(ax2) at least;
Jsk sk

i.e. second order accuracy is preserved. In practice, one uses the
scheme (3.27)+(3.28) with the 0% 's and 6”'s substituted from (3:.29)
and (3.30). Because of linear stability requirements we are constrained

to use 0 < yx < 1.

In the three dimensional case Eq. (3.28) takes the form

_n+l n+l 1 X n+1 n+l X n+l n+l
W =W + [0 (W W ¥ -5 (W W )]
Jsk,t Jsk,2 4 j*ti,k,8 .j+l’k)2 Jsk,t J-z,k,2 _],k,l J-1,k,z
Yy n+l n+] v n+l ¥l
+ 7l (W W ) Bt (W W ) ]
j,k+i,0 jok+#l,2  j,k,% jok-$4,2 j,k,2 j,k-1,2
1. Z n+l gl z n+l n+l
+ —[0o {W -W Y =9 (W -W ) )
J,l\',l"l j,k,Q"l .j’k’i _j,k,“'i .jyk)‘- ."I\'('I
(3.28a)




e

X ¥
where o and © are defined respectively according to
j*E, Kk, Jok+z,12

(3.29) and (3.30) suiltably modified, and

le Y |
9 =y Bk gl Jok,t (2, 317)
Jsk, o+l max |p = B

j’k’E j’k’2+1 j’k’z

Also, linear stability analysis [6], shows that in contradistinction to
the two dimensional and cylindrical symmetric cases, in the three
dimensional case the filtering coefficient yx has a more restricted
range. Specifically, in the 3-D case we are constrained to use

g < v ¢ 2/3.

4. TREATMENT OF BOUNDARY AND INITIAL CONDITIONS

(i) Boundaries That Are Not on The Body - -

The computation is usually done over a rectangular grid of J x K
net points, where J is the number of grid points in the x-direction and
K 1is the number in the y or r direction. We choose K in such a way
that the bow shock wave will not cross the upper boundary, Kk = K (the
lower boundary, k = 1, is usually taken along the axis of svmmetry) but

the right hand boundary, j = J. (See sketch.)

AR vl A i

e i At

.




Along BC the boundary conditions are found by extrapolation along

A E D

45° lines except that very near to B (2 points along BC) where

the extrapolation is in a direction perpendicular to BC. Along CF

we use the same strategy except that ve:.y near F the extrapolation
is in a direction parallel to the body surface. Along AL the
boundary conditions are determined by the symmetry of the flow (zero

angle of attack).

=t s /
B

A} \Q‘ G 2
& // 1 Q
6(63 ‘
|
S AX—|




I[f the flow is not symmetric about the x-axis (angle of attack is
not zero) then for the lower boundary we use not AFE but a line B'C'
which we treat in the same manner as BC. On the boundary AB we set
fixed the ambient free stream conditions of the steady state flow

which we are trying to model.

(ii) Boundary Conditions on the Surface of a Two-Dimensional Body

One way of dealing with boundary conditions on a body of arbitrary
shape is to transform the computational grid in such a fashion that the
body surface then coincides with one of the new coordinates. The
difficulty with this is that the finite difference algorithm becomes
more complex and has to be changed to fit each new problem. We chose, on
the other hand, to stay with the convenience of a rectangular mesh. Of
course, we then face the problem that the body surface does not, in 1

general, pass through grid points. (See sketch on previous page.)

We need to know the components of W at the point "Q" (inside the
body) at time t, in order to be able to compute, for example, W at

i L side S ime =t & At T ints
point (outside the body) at time tn+1 t, vt [he points

"a'" and "b" were chosen in such a wayv that the line Qab is normal to
the body at the point of intersection, '"c¢'". For the purpose of the
discussion in this section only, let f Dbe any component ot W or of
the related vector (p, u, v, E). When f stands for either the density,
energy or the velocity in the direction of the tangent to the body at 'c¢"
we find its value at Q by using a "parabolic reflection'". Namely, we
pass a parabola through the points a, b and Q so that the derivative
T

in the direction of the normal Qab is zero at the point ¢ This 1s

done by setting




. FG
F st fy " £, LR ;
SRRy ey LR R P (4.1)
b a

where Lo by and QQ are the distances of the points "a", "b" and

"Q" from the point "c". The values of f,1 and fh are found from

C

parabolic interpolation among the grid points nearest to them. Thus

- a(e-n)f, ¢ Sl g (4.2)

i

fa = %(a-l)(a-l)f

" "

where aAy 1is the distance of point a from point I fete.
When f stands for the velocity in the direction normal to the bodyv,

it must vanish at point 'c¢". We satisfy this condition through a

parabolic extrapolation that yields for fQ the value
e £ L ¢ t
- ) a b s a . X
LQ ® lQl(E~ - f—)'él'—j—-* 7] (4
a b a = b a
(iii) Boundary Conditions on the Surface of a Body of Revolution
The philosophy of the treatment is the same as in Section 4- (11)
except that where the radius of curvature of the body is finite we ust

instead of parabolic reflection and extrapolation linear ones. This
helps with the stability and leaves the overall accuracy unchanged.

Thus we replace (4.1)+(4.2) by (4.4)+(4.2):

d

¢ e, i
fo = £+ =2 (6, - ) 1.8)




while (4.3) 1is replaced by

£n - &
K wh - (2 a = R o =
LQ “u * Qb T, “b ta)] . (4.5)

Note that even though the finite difference system is solved for
W' = rW, the conditions (4.4) and (4.5) are applied to the physical

qualities W = W'/r,

Near the axis of symmetry, 1 = 0, we have the problem of W' = 0
there. To compute W on the axis we use the known values at 1 = AT
r = 2Aor and r = - Ar and interpolate. Finally, note that also on

boundaries away from the body surface, such as BC for example, all

extrapolations are done on W and not on W',

(iv) Initial Conditions

At t = 0 the whole flow field is assigned the free stream conditions.
We chose to nondimensionalize in such a wa, that both the free stream
pressure and density take on the value of 1. Thus the free stream sound
speed becomes ¢ = Vy.

When we did parametric runs the conditions at t = 0 were set to

the converged solution of a similar run thus saving computation time.




5. NUMERICAL RESULTS

he numerical results were obtained for several problems.

(1) Steady, two dimensional, supersonic flow past a circularly blunted

wedge with a semi-apex angle of 13°, at zero angle of attack.

(11) Steady, cylindrically symmetric, supersonic flow past a spherically
blunted cone with a semi-apex solid angle of 13°, at zero angle of

attack.

In both of the above groupings the computations were carried out
tor free stream Mach number range of 2 £ M < 4 with jumps of
aM_ = 0.5 from one run to another. The graphs show the distribution
along the body of the ratio of surface pressure to the stagnation point

pressure and the distribution of the surface local Mach number.

The Mach number distribution over the wedge is shown in Figs. 2 - o.
The pressure distribution over the wedge is shown in Figs. 7 - 1l1. The
yressure distribution over the cone is shown in Figs. 12 - 16. The Mach
I ¢

number distribution over the cone is shown in Figs. 17 - 21. At the top

of Figs. 2, 7, 12 and 17, each at M_ 2, 1is shown the body shape over

which the calculation was done.

The surface pressure over the body was computed in two ways: directly
from the finite difference scheme and also by assuming that the bod\
represents a stream tube over which there is isentropic flow and hence

the pressure over it is related directly to the (local) surface Mach
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number. In Fig. 12, for example, we show the pressure as computed by
both approaches. The dashed-line curve gives the pressure ratio as
obtained directly from the finite difference equation and the undashed
curve corresponds to the "isentropic" calculation. It is seen that the
results are nearly identical except near the front of the cone where
the calculations are affected by the small r value. Because of the
agreement between the two methods, we show on most graphs only pressure

distribution curve.

All the two dimensional calculations were done on a grid of
52x55 (J = 52, K = 55). Running time, when the initial conditions
correspond everywhere to the free stream value is about 25 minutes
(there are some variations depending on Mach number, wedge angle, etc.).
But if, for example, for the M = 2.5 run wWe use as initial conditions
the numerical solution from the M_ = 2.0 run, then the running time
decrease to about 10 minutes. We thus found that the average running
time per case, for computing the cases M = 2, 2.5, 3, 3.5, 4 1is

about 12 minutes.
For the flow around the blunted cone we used a net of 65x64 grid
points and the computation time was roughly the same as in the

cartesian case.

In order to compare our algorithm with other numerical techniques

we made use of the results obtained from semi-empirical computer programs

hased on Russian data for a blunt cone with 10° semi-apex angle at

M = 3. This information is contained in a 1966 AVCO Report

o
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no. SR 10-TR-66-47 written by R.ll. Kohrs., We ran calculations for the

i

N

same configuration. The comparison is shown in Fig. 22. It is seen

that the agreement is very good.

[ (iii) In Fig. 23 we show the results for our blunted wedge but at an

angle of attack of 5°. The distributions are shown for both the

Py YT

upper and lower surtaces.

In all of the above runs we used a linear Shuman filter, i.e. we
took m = 1 1in equations 3.18 and 3.19. The dissipation coefficient

x was taken to be 1/2 in the two dimensional calculations. In the

axisymmetric case the value of y was varied to get best results for

the stagnation density and was found to be .9 < yx < 1.0.

(iv) Finally, we tested our 3-D package by applying it to the problem
of the supersonic flow past a body composed of a hemisphere

followed by a circular cylinder, at a zero angle of attack.

This allowed us to check how the results obtained, using a 3-D
algorithm compare with those given by a (two-dimensional) axisymmetric
scheme. The computational net was 42x40x40. Thus we had 67,200 mesh

points as compared to the 4,225 points of the o65x65 "2-D" mesh. In

addition, in each mesh point in the 3-D case we have to store a

: S5-vector (p, ou, pv, pw, E}) as compared to the 4-vector (e, pu, pov, E)
|
\

in the axisvmmetric case. Thus the storage requirements in the 3-D case
exceed by a factor of 20 (twenty) those of the 2-D case. Since th

requirement exceeds the core-memory capacity, we used discs for the




nass-storage. fere we utilized the hyperbolic nature of the p.d.e. system:

as each field point was computed, its ''cube (3x3x3) of influence' was
moved by one mesh point freeing core-memory storage for data to be
transfered from the disc. The data transfer can be done while the
arithmetic unit carries out the computation. In this manner the effect
of the slow rate of transfer is mitigated. In fact, a typical run took
12 times longer than the corresponding 2-D calculation (all with the
above given mesh sizes). The "improved" efficiency (12 vs. 20) is due
to the coarser mesh (1/40 vs. 1/65). The pressure distribution thus
obtained agrees well with the axisymmetric results. Typically, while
the stagnation pressure was under-predicted by about 3% in the axi-
symmetric calculation, 1t was over-predicted by about 4% in the 3-D

runs. The drag coefficient

. = S (p“g)!{J i
b 5 2 2 R ) 2
; o_UZaR yM_  P_ ) Pstg' aR
was calculatea in both cases. Typical walues, at M_ = 3, are
C, = 0.98 (axisymmetric)
= 1,04 (3-0) .
D *
We conclude therefore, that our 3-D algorithm is apparently reliable
and we now plan to apply it to truly three dimensional flow, 1.e. in
the case of non-zero angle of attack.
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